
CNIT 370

MEA 3

RSA (TOTAL 50 PTS)

NOTE

‣ You need to include all the group activities in your final MEA
report.

‣ You should zip all the document in a single .zip file and upload
it the zip file to Blackboard

‣ MEA3 report is due by the end of day (11:59pm) on 10/26/17.
Blackboard is always slow around 11:59pm, please submit it at
least a few minutes, if not a few hours earlier.

‣ Two upload attempts will be allowed. But only the last attempt
will be graded.

Task 1.1 Individual Activity (3 pts)

In 3 minutes, please write down how to use asymmetric key to
encrypt and decrypt a message. Use math notations,
language, and the diagram to illustrate it.

Task 1.2: Group Activity (2 pts)

‣ In 5 minutes, please discuss the following question with the
students on your table:

Diffie-Hellman (DH) Key exchange is often categorized as a
public key or asymmetric key system. Can you directly use DH to
encrypt and decrypt a message? Why?

Suggested Reading:

‣ The Secret Story of Nonsecret Encryption
https://www.schneier.com/essays/archives/1998/04/the_secret_st
ory_of.html

‣ The Open Secret
https://www.wired.com/1999/04/crypto/

Misconceptions on Public Key

‣ Public-key encryption is more secure from cryptanalysis than
symmetric encryption

‣ Public-key encryption is a general-purpose technique that has
made symmetric encryption obsolete

‣ There is a feeling that key distribution is trivial when using
public-key encryption, compared to the cumbersome
handshaking involved with key distribution centers for
symmetric encryption

6

Public key Principles

‣ It can be used for encryptions
• Anything encrypted with public key can be decrypted use its

corresponding private key, and vice versa.
• Why we don’t use asymmetric keys directly on encryption?

Generally used in two occasions

‣ Key distribution (session set-up)
• How to have secure communications in general without having to trust

a KDC with your key

‣ Digital Signatures (Non-interactive Apps)
• How to verify that a message comes intact from the claimed sender

7

Public Key Requirements

‣ A trap-door one-way function is a family of invertible functions
fk, such that
• Y = fk(X) easy, if k and X are known
• X = fk–1(Y) easy, if k and Y are known
• X = fk–1(Y) infeasible, if Y known but k not known

‣ However, do not directly apply the trap-door function as the
encryption/description algorithms because the trap-door
function is deterministic.

‣ Some refers to the textbook RSA as RSA trapdoor

8

RSA

‣ Ronald Rivest, Adi Shamir, Leonard Adelman
• 1978 - Communications of the ACM (Feb)

‣ Most widely used general-purpose approach to
public-key encryption

‣ Currently the “Work Horse” of IT Security
• Most PKI products, SSL/TLS, IPSec, PGP, Outlook…

‣ Is a cipher in which the plaintext and
ciphertext are integers between 0 and n – 1 for
some n
• A typical size for n is 1024 bits, or 309 decimal digits

9

The Number Theories related to RSA:

‣ Prime Factorization
‣ Fermat’s little theorem (p is a prime #)
• ap-1 mod p = 1
where p is prime and gcd(a,p)=1
‣ Euler Totient Function ø(n)
• Number of elements in reduced set of residues
• for p.q (p,q prime) ø(p.q) = (p-1)(q-1)

‣ Euler’s Theorem: (N does not need to be a prime #)
• aø(N)mod N = 1 where gcd(a,N)=1, N

‣ The Chinese Remainder Theorem (trapdoor)
• xmod n=(xmod p*xmod q) if n=pq

10

RSA process

‣ p and q are two prime numbers.
‣ N = pq
‣ t = (p-1)(q-1)
‣ e is such that 1 < e < t and gcd(t,e) =
1.

‣ d is such that (ed) mod t = 1.

‣ Public key: P={e,N}
‣ Private key: S={d,p,q}
‣ Message: M
‣ Encrypt => C = Me mod N.
‣ Decrypt => M = Cd mod N.

RSA works, because

‣ in RSA have:
• N=p.q
• ø(N)=(p-1)(q-1)
• carefully chosen e & d to be inverses mod ø(N)
• hence e*d=1+k.ø(N) for some k

‣ Hence: (all the calculation is mod N)

Cd = (Me)d = Med = M1+k.ø(N) = M1.(Mø(N))k
= M1.(1)k = M1

Finding e and d

‣ Euclid’s algorithm
• GCD (m,n)=GCD (n, mod n) (m>n). Continue the process until n=0

‣ Using Euclid’s extended algorithm
• x[0] = (p-1)*(q-1) y[0] = 0
• x[1] = e y[1] = 1
• while x[i] > 0 calculate: x[i] = x[i-2] modulo x[i-1]
• y[i] = y[i-2] - floor(x[i-2] / x[i-1]) * y[i-1]

13

Task 2 Group Activity RSA Example, (5pts)

Finish this in 10 minutes
1. Select primes: p=17 & q=11,
2. Compute N = pq = ______________________
3. Compute ø(N)=(p–1)(q-1)= ________________
4. Select e : gcd(e,___)=1; choose e= 7
5. Determine: d= 23 works because ______________
6. Publish public key P= _______________________
7. Keep secret private key S= _______________________
8. given message M = 88 (88 <)
9. encryption: C = _______
10. decryption: M = _______

RSA Keys

‣ The public key is the combination of e and N
• Made	available	to	everyone	

‣ The private key is the combination of p, q, and d
• You can calculate any of these from any other
- Therefore many references will state the private key is simply d

• Kept secret

What if you lost either p, q, or d?

15

Choosing values for RSA variables

‣ Values of e
• RSA can be used for both encryption and digital signatures
• You should always use different values of e for each action

- Ensures that the two applications don’t interact
• Common applications are e=3 for signatures and e=5 for encryption or e=17

for signatures and e=65537
‣ Values of n
• N should be at least 2048 bits
• Therefore p and q should be at least 1024 bits

16

Task 3: Individual Activity (10 pt)

‣ Use the ‘RSA key Generator’ and the ‘RSA’ module in Cryptool
2.0, illustrate how to encrypt and decrypt a message. Do this
outside classroom.

‣ A) Encrypt a message (5pt), use random prime generation
with a range of 50. Output the message in Hex format (output
the byte array to a String Encoder, and choose presentation
format Hex)

‣ A) Decrypt the cipher text produced in Task 3.A (5pt)

Type (or Copy & Paste) the answers in the report, and attach the
*.cwm file in the zip file.

Task 4, Group Activity (10 pt)

‣ Public key: (N: 56977 e: 23)
‣ Cipher Text (HEX)
‣ AA 12 49 0D EE B0 6B 79 FE BD 93 4E 49 0D D3 8E 5C 43 36

CB 8D 43 49 0D DE D3 99 9D 49 69 93 4E
‣
‣ Use factorizer, RSA key generator and RSA (decryption mode)

to break the ciphered text.

RSA Implementation

‣ All RSA messages must be larger than the eth root of n
• Or else no modulo reduction takes place and you can easily recover the

message
- If e=5 and m < 5th root of n then an attacker can simply take the 5th root of m to recover

m

‣ This is common with sending AES keys via RSA
• Use pre-processing to ensure m is large enough

‣ RSA encryption is usually much faster than Decryption (CRT:
Chinese Reminder Theory)

19

RSA encryption in practice

msg
key

Preprocessing
ciphertextRSA

02 random	pad FF msg

RSA	modulus	size		(e.g.	2048	bits)

16	bits

Known	as	PKCS1	mode	2	(still	not	very	secure),	widely	
used	in	https		[Bleichenbacher attack,	1998]
Slides	from	Dr.	Dan	Boenh,	Stanford	University

PKCS1 v2.0 OAEP (1994)

Theorem: RSA-OAEP is CCA secure when H,G
are random oracles (ideal hash functions)

in practice: use SHA-256 for H and G

21

H+

G +

plaintext				to		encrypt with	RSA

randmsg 01 00..0

Slide	from	Dr.	Dan	Boenh,	Stanford	University

Subtleties in implementing OAEP [M ’00]

OAEP-decrypt(ct):
error = 0;

if (RSA-1(ct) > 2n-1)
{ error =1; goto exit; }

if (pad(OAEP-1(RSA-1(ct))) != “01000”)
{ error = 1; goto exit; }

Problem:		timing	information	leaks	type	of	error
Þ Attacker	can	decrypt	any	ciphertext

Lesson:		Don’t	implement	RSA-OAEP	yourself	! Slide	from	Dr.	Dan	Boenh,	Stanford	University

Attacks on RSA Implementations

‣ Timing attack: (1997)
• The time it takes to compute Cd (mod N)

can expose d.
‣ Power attack: (1999)
• The power consumption of a smartcard while

it is computing Cd (mod N) can expose d.
‣ Faults attack: (1997)
• A computer error during Cd (mod N)

one error can expose d

OpenSSL defense: check output. 10% slowdown.

RSA Key Generation problems
OpenSSL RSA key generation (abstract):

Poor entropy at startup:
‣ Same p will be generated by multiple devices,

but different q
‣ N1 , N2 : RSA keys from different devices ⇒

gcd(N1,N2) = p

prng.seed(seed)
p = prng.generate_random_prime()
prng.add_randomness(bits)
q = prng.generate_random_prime()
N = p*q

Slide		from	Dr.	Dan	Boenh,	Stanford	University

Task 5. Individual Activity (5pt)

How do we use public-key encryption to encrypt disk? (EFS)

Hint: You really want to encrypt the file using symmetric key
encryption, such as AES. In the example, it is E(𝐾", 𝐹𝑖𝑙𝑒) . So the
question is: how do you allow both Alice and Both know 	𝐾" ? Use
language, diagram and math notation to describe it.

25

Bob

write

E(kF,	File)

Aliceread

File

skA
skB

Adapted		from	Dr.	Dan	Boenh’s course,	Stanford	University

Task 6. Group Activity (10 pt)

‣ Cryptool V1, ‘Analysis’, à ‘Asymmetric Encryption’ à ‘Side
Channel Attack on Textbook RSA’

‣ Click ‘Show Information Dialogs’ on the bottom right, then
following the instruction to complete the demo.

‣ Explain in diagram, math notations, and language, how the
normal encryption and decryption is carried in this example
(5pt)

‣ Explain in more than two different representations, (two out of
language, diagram, and math notations) how the attack is
conducted.

26

Task 7. Individual Activity: 5pt

‣ Suppose someone finds a way to easily factor large prime
numbers. This makes RSA no longer secure. When searching
for alternatives, someone suggested that Diffie-Hellman
algorithms can be revised to replace RSA for public key and
private key encryption.

‣ If it works, does it make the revised DH safe to use? Put it
differently, does large prime factorization a threat to DH?

‣ If it works, illustrate in language and diagram/math notation,
how it works. (HINT: El Gamal)

