## CNII 370 MEA3

RSA [TOTAL 50 PTS]

## Purdue

COMPUTER AND
INFORMATION TECHNOLOGY

## NOTE

- You need to include all the group activities in your final MEA report.
- You should zip all the document in a single .zip file and upload it the zip file to Blackboard
- MEA3 report is due by the end of day (11:59pm) on 10/26/17. Blackboard is always slow around 11:59pm, please submit it at least a few minutes, if not a few hours earlier.
- Two upload attempts will be allowed. But only the last attempt will be graded.


## Task 1.1 Individual Activity ( 3 pts )

In 3 minutes, please write down how to use asymmetric key to encrypt and decrypt a message. Use math notations, language, and the diagram to illustrate it.

## Task 1.2: Group Activity (2 pts)

- In 5 minutes, please discuss the following question with the students on your table:

Diffie-Hellman (DH) Key exchange is often categorized as a public key or asymmetric key system. Can you directly use DH to encrypt and decrypt a message? Why?

## Suggested Reading:

- The Secret Story of Nonsecret Encryption https://www.schneier.com/essays/archives/1998/04/the secret st ory of.html
- The Open Secret
https://www.wired.com/1999/04/cryptol


## Misconceptions on Public Key

- Public-key encryption is more secure from cryptanalysis than symmetric encryption
- Public-key encryption is a general-purpose technique that has made symmetric encryption obsolete
- There is a feeling that key distribution is trivial when using public-key encryption, compared to the cumbersome handshaking involved with key distribution centers for symmetric encryption


## Public key Principles

- It can be used for encryptions
- Anything encrypted with public key can be decrypted use its corresponding private key, and vice versa.
- Why we don't use asymmetric keys directly on encryption?


## Generally used in two occasions

- Key distribution (session set-up)
- How to have secure communications in general without having to trust a KDC with your key
- Digital Signatures ( Non-interactive Apps)
- How to verify that a message comes intact from the claimed sender


## Purdue

## Public Key Requirements

- A trap-door one-way function is a family of invertible functions $f_{k}$, such that
- $Y=f_{k}(X)$ easy, if $k$ and $X$ are known
- $X=f_{k}{ }^{-1}(Y)$ easy, if $k$ and $Y$ are known
- $X=f_{k}^{-1}(Y)$ infeasible, if $Y$ known but $k$ not known
- However, do not directly apply the trap-door function as the encryption/description algorithms because the trap-door function is deterministic.
- Some refers to the textbook RSA as RSA trapdoor


## Purdue

## RSA

- Ronald Rivest, Adi Shamir, Leonard Adelman - 1978 - Communications of the ACM (Feb)
- Most widely used general-purpose approach to public-key encryption
- Currently the "Work Horse" of IT Security - Most PKI products, SSL/TLS, IPSec, PGP, Outlook...
- Is a cipher in which the plaintext and ciphertext are integers between 0 and $n-1$ for some n
- A typical size for $n$ is 1024 bits, or 309 decimal digits


## The Number Theories related to RSA:

- Prime Factorization
- Fermat's little theorem (p is a prime \#)

```
- ap-1 mod p = 1
```

where p is prime and $\operatorname{gcd}(\mathrm{a}, \mathrm{p})=1$

- Euler Totient Function $\varnothing(\mathrm{n})$
- Number of elements in reduced set of residues

$$
\text { - for p.q }(p, q \text { prime }) \quad \varnothing(p . q)=(p-1)(q-1)
$$

- Euler's Theorem: ( N does not need to be a prime \#)

$$
a^{\varnothing(\mathbb{N})} \bmod N=1 \text { where } \operatorname{gcd}(a, N)=1, N
$$

- The Chinese Remainder Theorem (trapdoor)

$$
\text { - } x_{\bmod n}=\left(x_{\bmod p} p x_{\bmod q}\right) \text { if } n=p q
$$

## RSA process

- $p$ and $q$ are two prime numbers.
- $\mathrm{N}=\mathrm{pq}$
- $t=(p-1)(q-1)$
- $e$ is such that $1<e<t$ and $\operatorname{gcd}(t, e)=$ 1.
- $d$ is such that (ed) mod $t=1$.
- Public key: $P=\{e, N\}$
- Private key: $S=\{d, p, q\}$
- Message: M
- Encrypt $=>$ C $=M^{e} \bmod N$.
- Decrypt $=>\mathrm{M}=\mathrm{C}^{\mathrm{d}} \bmod \mathrm{N}$.


## RSA works, because

- in RSA have:
- $N=p \cdot q$
- $\varnothing(N)=(p-1)(q-1)$
- carefully chosen e \& d to be inverses mod $\varnothing(\mathbb{N})$
- hence $e^{\star} d=1+k . \varnothing(N)$ for some $k$
- Hence: ( all the calculation is mod $\mathbf{N}$ )

$$
C^{d}=\left(M^{e}\right)^{d}=M^{e d}=M^{1+k \cdot \varnothing(N)}=M^{1} \cdot\left(M^{\varnothing(N)}\right)^{k}
$$

$$
=M^{1} \cdot(1)^{k}=M^{1}
$$

## Finding e and $d$

- Euclid's algorithm
- $\operatorname{GCD}(\mathrm{m}, \mathrm{n})=\mathrm{GCD}(\mathrm{n}, \bmod \mathrm{n})(\mathrm{m}>\mathrm{n})$. Continue the process until $\mathrm{n}=0$
- Using Euclid's extended algorithm
- $x[0]=(p-1) *(q-1) \quad y[0]=0$
- $x[1]=e \quad y[1]=1$
- while $x[i]>0$ calculate: $x[i]=x[i-2]$ modulo $x[i-1]$
- y[i] = y[i-2] - floor ( $x[i-2] / x[i-1])$ * y[i-1]


## Purdue

## Task 2 Group Activity RSA Example, (5pts)

## Finish this in 10 minutes

1. Select primes: $p=17 \& q=11$,
2. Compute $N=p q=$
3. Compute $\varnothing(N)=(p-1)(q-1)=$
4. Select e: $\operatorname{gcd}(e, \ldots, \quad)=1$; choose $e=7$
5. Determine: d= 23 works because $\qquad$
6. Publish public key $\mathrm{P}=$
7. Keep secret private key $\mathrm{S}=$ $\qquad$
8. given message $M=88$ ( $88<\quad$ )
9. encryption: $\mathrm{C}=$
10. decryption: $\mathrm{M}=$ $\qquad$

## RSA Keys

- The public key is the combination of $e$ and $N$
- Made available to everyone
- The private key is the combination of $p, q$, and $d$
- You can calculate any of these from any other

Therefore many references will state the private key is simply $d$

- Kept secret

What if you lost either $\mathrm{p}, \mathrm{q}$, or d ?

## Choosing values for RSA variables

## - Values of e

- RSA can be used for both encryption and digital signatures
- You should always use different values of $e$ for each action

Ensures that the two applications don't interact

- Common applications are $e=3$ for signatures and $e=5$ for encryption or $e=17$ for signatures and $e=65537$
- Values of $\boldsymbol{n}$
- $N$ should be at least 2048 bits
- Therefore $p$ and $q$ should be at least 1024 bits


## Task 3: Individual Activity (10 pt)

- Use the 'RSA key Generator' and the 'RSA' module in Cryptool 2.0, illustrate how to encrypt and decrypt a message. Do this outside classroom.
- A) Encrypt a message (5pt), use random prime generation with a range of 50. Output the message in Hex format (output the byte array to a String Encoder, and choose presentation format Hex)
- A) Decrypt the cipher text produced in Task 3.A (5pt)

Type (or Copy \& Paste) the answers in the report, and attach the *.cwm file in the zip file.

## Task 4, Group Activity (10 pt)

- Public key: (N: 56977 e: 23)
- Cipher Text (HEX)
- AA 1249 0D EE B0 6B 79 FE BD 93 4E 49 0D D3 8E 5C 4336 CB 8D 4349 0D DE D3 99 9D 4969 93 4E
- Use factorizer, RSA key generator and RSA (decryption mode) to break the ciphered text.


## RSA Implementation

- All RSA messages must be larger than the eth root of $\mathbf{n}$
- Or else no modulo reduction takes place and you can easily recover the message

If $e=5$ and $m<5^{\text {th }}$ root of $n$ then an attacker can simply take the $5^{\text {th }}$ root of $m$ to recover m

- This is common with sending AES keys via RSA
- Use pre-processing to ensure $m$ is large enough
- RSA encryption is usually much faster than Decryption (CRT: Chinese Reminder Theory)


## RSA encryption in practice



16 bits


Known as PKCS1 mode 2 (still not very secure), widely
used in https [Bleichenbacher attack, 1998]
Slides from Dr. Dan Boenh, Stanford University

## Purdue



Slide from Dr. Dan Boenh, Stanford University
Theorem: RSA-OAEP is CCA secure when H,G are random oracles (ideal hash functions) in practice: use SHA-256 for H and G

## Subtleties in implementing OAEP

```
OAEP-decrypt(ct):
    error \(=0\);
    if \(\left(\operatorname{RSA}^{-1}(c t)>2^{n-1}\right)\)
        \{ error =1; goto exit; \}
    if ( \(\left.\operatorname{pad}\left(\mathrm{OAEP}^{-1}\left(\mathrm{RSA}^{-1}(\mathrm{ct})\right)\right)!=" 01000 "\right)\)
        \{ error = 1; goto exit; \}
```

Problem: timing information leaks type of error
$\Rightarrow$ Attacker can decrypt any ciphertext
Lesson: Don't implement RSA-OAEP yourself !

## Attacks on RSA Implementations

, Timing attack: (1997)

- The time it takes to compute $\mathrm{C}^{\mathrm{d}}(\bmod \mathrm{N})$
can expose d.
- Power attack: (1999)
- The power consumption of a smartcard while
it is computing $C^{d}(\bmod N)$ can expose $d$.
- Faults attack: (1997)
- A computer error during $C^{d}(\bmod N)$
one error can expose d

OpenSSL defense: check output. 10\% slowdown.

## RSA Key Generation problems

## OpenSSL RSA key generation (abstract):

```
prng.seed(seed)
p = prng.generate_random_prime()
prng.add_randomness(bits)
q = prng.generate_random_prime()
N = p*q
```


## Poor entropy at startup:

- Same p will be generated by multiple devices, but different $q$
- $\mathbf{N}_{1}, \mathbf{N}_{2}$ : RSA keys from different devices $\Rightarrow$ $\operatorname{gcd}\left(\mathbf{N}_{1}, \mathrm{~N}_{2}\right)=p$


## Task 5. Individual Activity (5pt)

## How do we use public-key encryption to encrypt disk? (EFS)

Hint: You really want to encrypt the file using symmetric key encryption, such as AES. In the example, it is $\mathrm{E}\left(K_{p}\right.$, File). So the question is: how do you allow both Alice and Both know $K_{p}$ ? Use language, diagram and math notation to describe it.


## Purdue

## Task 6. Group Activity (10 pt)

- Cryptool V1, ‘Analysis', $\rightarrow$ 'Asymmetric Encryption’ $\rightarrow$ 'Side Channel Attack on Textbook RSA'
- Click 'Show Information Dialogs' on the bottom right, then following the instruction to complete the demo.
- Explain in diagram, math notations, and language, how the normal encryption and decryption is carried in this example (5pt)
- Explain in more than two different representations, ( two out of language, diagram, and math notations) how the attack is conducted.


## Task 7. Individual Activity: 5pt

- Suppose someone finds a way to easily factor large prime numbers. This makes RSA no longer secure. When searching for alternatives, someone suggested that Diffie-Hellman algorithms can be revised to replace RSA for public key and private key encryption.
- If it works, does it make the revised DH safe to use? Put it differently, does large prime factorization a threat to DH?
- If it works, illustrate in language and diagram/math notation, how it works. (HINT: El Gamal)

