
CNIT 370

MEA 3

RSA   (TOTAL 50 PTS)



NOTE

‣ You need to include all the group activities in your final MEA 
report. 

‣ You should zip all the document in a single .zip file and upload 
it the zip file to Blackboard

‣ MEA3 report is due by the end of day (11:59pm) on 10/26/17. 
Blackboard is always slow around 11:59pm, please submit it at 
least a few minutes, if not a few hours earlier. 

‣ Two upload attempts will be allowed. But only the last attempt 
will be graded. 



Task 1.1   Individual Activity ( 3 pts )

In 3 minutes, please write down how to use asymmetric key to 
encrypt and decrypt a message.  Use math notations, 
language, and the diagram to illustrate it. 



Task 1.2: Group Activity (2 pts)

‣ In 5 minutes, please discuss the following question with the 
students on your table:

Diffie-Hellman (DH) Key exchange is often categorized as a 
public key or asymmetric key system. Can you directly use DH to 
encrypt and decrypt a message?  Why? 



Suggested Reading: 

‣ The Secret Story of Nonsecret Encryption
https://www.schneier.com/essays/archives/1998/04/the_secret_st
ory_of.html

‣ The Open Secret
https://www.wired.com/1999/04/crypto/



Misconceptions on Public Key

‣ Public-key encryption is more secure from cryptanalysis than 
symmetric encryption

‣ Public-key encryption is a general-purpose technique that has 
made symmetric encryption obsolete

‣ There is a feeling that key distribution is trivial when using 
public-key encryption, compared to the cumbersome 
handshaking involved with key distribution centers for 
symmetric encryption
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Public key Principles

‣ It can be used for encryptions
• Anything encrypted with public key can be decrypted use its 

corresponding private key, and vice versa.
• Why we don’t use asymmetric keys directly on encryption?

Generally used in two occasions

‣ Key distribution (session set-up)
• How to have secure communications in general without having to trust 

a KDC with your key

‣ Digital Signatures ( Non-interactive Apps)
• How to verify that a message comes intact from the claimed sender
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Public Key Requirements

‣ A trap-door one-way function is a family of invertible functions 
fk, such that
• Y = fk(X) easy, if k and X are known
• X = fk–1(Y) easy, if k and Y are known
• X = fk–1(Y) infeasible, if Y known but k not known

‣ However, do not directly apply the trap-door function as the 
encryption/description algorithms because the trap-door 
function is deterministic.

‣ Some refers to the textbook RSA as RSA trapdoor
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RSA

‣ Ronald Rivest, Adi Shamir, Leonard Adelman
• 1978 - Communications of the ACM (Feb)

‣ Most widely used general-purpose approach to 
public-key encryption

‣ Currently the “Work Horse” of IT Security
• Most PKI products, SSL/TLS, IPSec, PGP, Outlook…

‣ Is a cipher in which the plaintext and 
ciphertext are integers between 0 and n – 1 for 
some n
• A typical size for n is 1024 bits, or 309 decimal digits
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The Number Theories related to RSA:

‣ Prime Factorization
‣ Fermat’s little theorem (p is a prime #)
• ap-1 mod p = 1 
where p is prime and gcd(a,p)=1
‣ Euler Totient Function ø(n)
• Number of elements in reduced set of residues
• for p.q (p,q prime) ø(p.q) = (p-1)(q-1)

‣ Euler’s Theorem:  (N does not need to be a prime #)
• aø(N)mod N = 1 where gcd(a,N)=1, N 

‣ The Chinese Remainder Theorem (trapdoor)
• xmod n=(xmod p*xmod q) if n=pq
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RSA process

‣ p and q are two prime numbers.
‣ N = pq
‣ t = (p-1)(q-1)
‣ e is such that 1 < e < t and gcd(t,e) = 
1.

‣ d is such that (ed) mod t = 1.

‣ Public key:  P={e,N}
‣ Private key: S={d,p,q}
‣ Message:  M
‣ Encrypt => C = Me mod N.
‣ Decrypt => M = Cd mod N.



RSA works, because

‣ in RSA have:
• N=p.q
• ø(N)=(p-1)(q-1)
• carefully chosen e & d to be inverses mod ø(N)
• hence e*d=1+k.ø(N) for some k

‣ Hence:  ( all the calculation is mod N)

Cd = (Me)d = Med = M1+k.ø(N) = M1.(Mø(N))k
= M1.(1)k = M1



Finding e and d

‣ Euclid’s algorithm
• GCD (m,n)=GCD (n, mod n) (m>n). Continue the process until n=0

‣ Using Euclid’s extended algorithm
• x[0] = (p-1)*(q-1) y[0] = 0 
• x[1] = e y[1] = 1 
• while x[i] > 0 calculate: x[i] = x[i-2] modulo x[i-1]
• y[i] = y[i-2] - floor( x[i-2] / x[i-1] ) * y[i-1] 
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Task 2  Group Activity  RSA Example,  (5pts)

Finish this in 10 minutes
1. Select primes: p=17 & q=11, 
2. Compute N = pq =    ______________________
3. Compute ø(N)=(p–1)(q-1)=  ________________
4. Select e : gcd(e,___)=1; choose e= 7
5. Determine:   d= 23 works because   ______________
6. Publish public key P= _______________________
7. Keep secret private key S= _______________________
8. given message M = 88 (88 <    )
9. encryption: C = _______
10. decryption:  M = _______



RSA Keys

‣ The public key is the combination of e and N
• Made	available	to	everyone	

‣ The private key is the combination of p, q, and d
• You can calculate any of these from any other
- Therefore many references will state the private key is simply d

• Kept secret

What if you lost either p, q, or d? 
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Choosing values for RSA variables

‣ Values of e
• RSA can be used for both encryption and digital signatures
• You should always use different values of e for each action 

- Ensures that the two applications don’t interact
• Common applications are e=3 for signatures and e=5 for encryption or e=17 

for signatures and e=65537
‣ Values of n
• N should be at least 2048 bits 
• Therefore p and q should be at least 1024 bits
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Task 3:  Individual Activity (10 pt)

‣ Use the ‘RSA key Generator’ and the ‘RSA’ module in Cryptool
2.0, illustrate how to encrypt and decrypt a message. Do this 
outside classroom. 

‣ A) Encrypt a message (5pt),  use random prime generation 
with a range of 50.  Output the message in Hex format (output 
the byte array to a String Encoder, and choose presentation 
format Hex) 

‣ A) Decrypt the cipher text produced in Task 3.A (5pt)

Type (or Copy & Paste ) the answers in the report, and attach the 
*.cwm file in the zip file. 



Task 4, Group Activity   (10 pt)

‣ Public key:   (N:  56977 e: 23)
‣ Cipher Text  (HEX)
‣ AA 12 49 0D EE B0 6B 79 FE BD 93 4E 49 0D D3 8E 5C 43 36 

CB 8D 43 49 0D DE D3 99 9D 49 69 93 4E
‣
‣ Use factorizer,  RSA key generator and RSA (decryption mode) 

to break the ciphered text.



RSA Implementation

‣ All RSA messages must be larger than the eth root of n
• Or else no modulo reduction takes place and you can easily recover the 

message
- If e=5 and m < 5th root of n then an attacker can simply take the 5th root of m to recover 

m

‣ This is common with sending AES keys via RSA
• Use pre-processing to ensure m is large enough

‣ RSA encryption is usually much faster than Decryption (CRT: 
Chinese Reminder Theory)
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RSA encryption in practice

msg
key

Preprocessing
ciphertextRSA

02 random	pad FF msg

RSA	modulus	size		(e.g.	2048	bits)

16	bits

Known	as	PKCS1	mode	2	(still	not	very	secure),	widely	
used	in	https		[Bleichenbacher attack,	1998]
Slides	from	Dr.	Dan	Boenh,	Stanford	University



PKCS1 v2.0 OAEP (1994)

Theorem:  RSA-OAEP is CCA secure when  H,G  
are random oracles (ideal hash functions)

in practice:  use SHA-256 for H and G
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H+

G +

plaintext				to		encrypt with	RSA

randmsg 01 00..0

Slide	from	Dr.	Dan	Boenh,	Stanford	University



Subtleties in implementing OAEP    [M ’00]

OAEP-decrypt(ct):
error = 0;

if  ( RSA-1(ct) > 2n-1 )
{ error =1;  goto exit; }

if  ( pad(OAEP-1(RSA-1(ct))) != “01000” )
{ error = 1;  goto exit; }

Problem:		timing	information	leaks	type	of	error
Þ Attacker	can	decrypt	any	ciphertext

Lesson:		Don’t	implement	RSA-OAEP	yourself	! Slide	from	Dr.	Dan	Boenh,	Stanford	University



Attacks on RSA Implementations

‣ Timing attack: (1997)
• The time it takes to compute   Cd (mod N)

can expose   d.
‣ Power attack: (1999)
• The power consumption of a smartcard while 

it is computing  Cd (mod N)   can expose  d.
‣ Faults attack: (1997)
• A computer error during   Cd (mod N)  

one error can expose  d

OpenSSL defense:  check output. 10% slowdown.



RSA Key Generation problems
OpenSSL RSA key generation  (abstract):

Poor entropy at startup:
‣ Same p will be generated by multiple devices, 

but different q
‣ N1 , N2 :   RSA keys from different devices  ⇒

gcd(N1,N2) = p

prng.seed(seed)
p = prng.generate_random_prime()
prng.add_randomness(bits)
q = prng.generate_random_prime()
N = p*q

Slide		from	Dr.	Dan	Boenh,	Stanford	University



Task 5. Individual Activity (5pt)

How do we use public-key encryption to encrypt disk? (EFS)

Hint:  You really want to encrypt the file using symmetric key 
encryption, such as AES. In the example, it is E(𝐾", 𝐹𝑖𝑙𝑒) . So the 
question is: how do you allow both Alice and Both know 	𝐾" ? Use 
language, diagram and math notation to describe it. 
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Bob

write

E(kF,	File)

Aliceread

File

skA
skB

Adapted		from	Dr.	Dan	Boenh’s course,	Stanford	University



Task 6.  Group Activity  (10 pt)

‣ Cryptool V1, ‘Analysis’, à ‘Asymmetric Encryption’ à ‘Side 
Channel Attack on Textbook RSA’

‣ Click ‘Show Information Dialogs’ on the bottom right, then 
following the instruction to complete the demo. 

‣ Explain in diagram, math notations, and language, how the 
normal encryption and decryption is carried in this example 
(5pt)

‣ Explain in more than two different representations, ( two out of 
language, diagram, and math notations) how the attack is 
conducted.  
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Task 7. Individual Activity:  5pt

‣ Suppose someone finds a way to easily factor large prime 
numbers.  This makes RSA no longer secure. When searching 
for alternatives, someone suggested that Diffie-Hellman 
algorithms can be revised to replace RSA for public key and 
private key encryption. 

‣ If it works, does it make the revised DH safe to use? Put it 
differently, does large prime factorization a threat to DH?

‣ If it works, illustrate in language and diagram/math notation, 
how it works.   (HINT:  El Gamal)


