Group Activity (10 pts)

Answer the following question on the white board, and present your solutions in 2 minutes

› In groups, consider a generic public key protocol. What enables them to a large number of users such as the number of users on the Internet?

› Think in terms of what pieces are vital to all public key systems in order for them to scale to Internet-scale.
 (Write your key features or key terms)

› In your MEA report, record the original and revised answers from your group
Responses to Public Key Activity

Group Responses:
Public Key Infrastructure (PKI)

What is required to make Public Key Cryptosystems work?

Authoritative Functions:

1. Authority: An entity which is responsible for creating and destroying relationships between a client and keys (…etc.) including adding or removing entities.
2. Issuance Process: A way (on which all participants rely) to issue access to the system and bind pieces of the system together.
3. Termination Process: A way (on which all participants rely) to revoke access to the system and un-bind pieces of the system together.

Public Key Infrastructure (PKI)

What is required to make Public Key Cryptosystems work?

Relationship Functions:

4. **Authority Management**: Management of what entities in the system have the authority to provide clients with various services.

5. **Key Management**: Binding of keys to identities; issuance, revocation, update, recovery of keys

6. **Credentials Validation**: A process by which credentials are determined to be authentic to the entity.

PKI Definition

- RFC 4949 defines PKI as

 “the set of hardware, software, people, policies, and procedures needed to create, manage, store, distribute, and revoke digital certificates based on asymmetric cryptography”

- The principal objective: to enable secure, convenient, and efficient acquisition of public keys.

- IETF X.509 (PKIX) working group has been the driving force behind setting up a formal (and generic) model based on X.509 that is suitable for deploying a certificate-based architecture on the Internet
So, what are we trying to accomplish with PKI?
So, what are we trying to accomplish with PKI?

- Confidentiality, *(of course).*
- Scalability
- Authentication
 (or improvement in authentication)
X.509 is a directory authentication service that solves the following problems without the aid of a trusted third party who communicates with you during the protocol.

1. How do you get the public key of someone to whom you wish to send mail?
2. How do you know it is valid and not a forgery?
3. How can you and another user agree on a private key to use to communicate over an insecure network?
The X.509 Protocol (Cont.)

- The certificates form a tree-structured hierarchy.
- Each certificate contains fields for Version, Serial number, Algorithm for signature, Name of issuer (CA), Period of validity, Subject name, Subject public key information, and the Signature of the CA, and perhaps other fields depending on the version.
- Use `finger` or `ftp` or a web browser to obtain the certificate of a user to whom you wish to send mail via public key cryptography.
- Use the “Issuer” field in the certificate to find the certificate for the CA, etc., to the root (whom everyone trusts) or up to some CA in the chain from you to the root.
ITU-T recommendation X.509 defines a framework for provision of authentication services. Each user has a public key certificate issued by a trusted certification authority CA. The signature of the certificate consists of the hash codes of its other fields, signed by the CA's private key.
Digital Signatures (generic model)

Bob

Transmit

Alice

Bob’s private key

Bob’s signature for M

Digital signature generation algorithm

Bob’s public key

Digital signature verification algorithm

Return signature valid or not valid

Two approaches of Digital Signatures

(a) RSA Approach

(b) DSA Approach

Public Key Certificate Use

- **Unsigned certificate**: contains user ID, user's public key

- **Bob's ID information**: Bob's public key

- **CA information**

- **Signed certificate**

- **Recipient can verify signature by comparing hash code values**

- **Generate hash code of unsigned certificate**

- **Encrypt hash code with CA's private key to form signature**

- **Decrypt signature with CA's public key to recover hash code**

- **Create signed digital certificate**

- **Use certificate to verify Bob's public key**
Individual Activity (10 pt)

- Use CryTool 1 to experience Digital Signature. [Procedures and Screenshots]
- 1) Generate Asymmetric Key Pair
 - ‘Digital Signature/PKI’ → PKI → ‘Generate/import keys’
 - Use RSA 1024 bit, Enter your Name and PIN, create new key pair and show ‘Public Parameters’, and ‘certificate’.
- 2) Use the step by step signature to create new signatures
 - ‘Digital Signature/PKI’ → ‘Signature Demonstration’
- 3) Sign a document
 - ‘Digital Signature/PKI’ → ‘sign a document’ (Do not close this window)
- 4) Signature verification
 - From previous step, click ‘Verify Signature’.
The X.509 Protocol (Cont.) - Please Note:

- Certificates need not be specially protected since they are unforgeable.
- Any user with access to the public key of the CA can recover a user’s public key that was certified.
- No one other than the CA can modify the certificate without the change being detected.
- CA's may certify each other, to make it easier for users to reach a CA they trust when obtaining the certificate of a new user.
- To revoke a certificate (for example, if the user's key was compromised), the CA of that key puts it on a public list, with its serial number and revocation date.
The X.509 Protocol (Cont.) – Authentication Procedures

- Let us use the notation $X\{M\}$ to mean "X signs M", that is, M followed by the signed hash code of M.
- The notation $A \rightarrow B$ means "A sends the following message to B"
- t_A is a time stamp, giving the date and time the message was sent
- r_A is a nonce, that is, a random number generated and used just this one time
- $sessionkey_{AB}$ is the key to a single-key cipher A and B will use to communicate for awhile.
- $sgnData$ is the signature of the message digest of the other fields.
Consider the following three messages.

1. $A \rightarrow B$: $A\{t_A, r_A, B, sgnData, sessionkey_{AB}\}$
2. $B \rightarrow A$: $B\{t_B, r_B, A, r_A, sgnData, sessionkey_{AB}\}$
3. $A \rightarrow B$: $A\{r_B\}$

- Either Message 1, or Messages 1 and 2, or all three messages may be used.
- The session key is enciphered using the recipient's public key, which must be known to the sender.
The X.509 Protocol (Cont.) – Authentication Procedures

Consider the following three messages.

1. $A \rightarrow B$: $A\{t_A, r_A, B, sgnData, sessionkey_{AB}\}$
 Message 1 establishes the identity of A, that the message was generated by A, that the message was intended for B, and that the message has not been changed or sent more than once.

2. $B \rightarrow A$: $B\{t_B, r_B, A, r_A, sgnData, sessionkey_{AB}\}$
 Message 2 establishes the identity of B, that the reply was generated by B, that the reply was intended for A, and that the reply has not been changed or sent more than once.

3. $A \rightarrow B$: $A\{r_B\}$
 The purpose of the third message, if it is used, is to obviate the need to check time stamps. It is used when synchronized clocks are not available. It works because both nonces are echoed, so they can be checked to detect replay attacks.
Hey CA, I need to talk to B. Is this really A?

$A \rightarrow B, \quad B \rightarrow A$

The X.509 Protocol – Certificate Issuance Framework

What’s Missing???

1. Create Certificate Request
2. Certificate Request
3. Approve Certificate Request
4. Public Certificate Private Key Intermediates
5. Private Key

Developer

Certificate Authority

Deployment Target

Secret Storage

Security Engineer

Authority

Authority Management

Credentials Validation

Graphic attribution: Netflix Lemur Development Environment Project
X.509 CA Hierarchy
The X.509 Protocol: Using an “Expired” Certificate
Task 3: Group Activity (10 pts)

Answer the following question on the white board, and present your solutions in 2 minutes.

1. Secure web use relies on PKI. Briefly, how does your computer or browser authenticate certificates?
2. How can certificate authenticity be subverted? Diagram and explain using math and text.

In your MEA report, record the original and revised answers from your group.
Task 4: Individual Task (10 pts)

- Ten Risks of PKI: What You’re not Being Told about Public Key Infrastructure

- NIST SP 800-32 Introduction to Public Key Technology (pp. 15-29)

- Did “10 Risks of PKI” discussed by Schneier and Ellison properly addressed by NIST SP 800-32 standard?